Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation
Weilong Shi,
Wei Sun,
Yanan Liu,
Xiangyu Li,
Xue Lin,
Feng Guo and
Yuanzhi Hong
Renewable Energy, 2022, vol. 182, issue C, 958-968
Abstract:
Photocatalytic H2 evolution is a clean and renewable process that converts solar energy into chemical energy through water splitting under solar light irradiation. Herein, zero-dimensional (0D) Bi3TaO7 (BTO) quantum dots/three-dimensional (3D) onion-ring-like g-C3N4 (OR-CN) S-scheme heterojunction catalyst is constructed to simulate the production of hydrogen by photocatalysis under sunlight irradiation through a solvothermal method for photocatalytic hydrogen production under visible light irradiation. Results reveal that BTO/OR-CN heterojunction exhibited much higher photocatalytic activity compared to the pure BTO and OR-CN, in which the optimal loading amount 0.3% BTO/OR-CN composite endows the optimal photocatalytic H2 evolution rate of 4891 μmol g−1 with the apparent quantum yield (AQY) at 420 nm of 4.1%. The enhancement of excellent photocatalytic H2 performance is due to the formation of S-scheme heterojunction structure between 0D BTO quantum dots and 3D OR-CN, which promotes the separation and migration of photogenerated carriers and significantly enhances the visible-light absorption capacity. This work offers a viable strategy to construct 0D/3D S-scheme heterojunction photocatalyst in the application of photocatalytic field under visible light.
Keywords: Bi3TaO7; g-C3N4; Visible light; Hydrogen; Photocatalysis; S-scheme (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121015998
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:182:y:2022:i:c:p:958-968
DOI: 10.1016/j.renene.2021.11.030
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().