Control of a boundary layer over a wind turbine blade using distributed passive roughness
Musa Özkan and
Onur Erkan
Renewable Energy, 2022, vol. 184, issue C, 421-429
Abstract:
Wind turbines are mostly prone to reduced aerodynamic performance due to the inevitable occurrence of the roughness on blades. However, it may be possible to control the boundary layer by means of the right sort of roughness. In this study, distributed passive roughness is applied to the surface of NACA 63–415 airfoil. The influence of the roughness on the aerodynamic performance is numerically investigated by means of the TSST turbulence model for 103 ≤ Re ≤ 3 × 106 and for the angle of attack α = 6°. Results show that the effect of roughness on the airfoil performance is negligible for Re ≤ 104. However, for 5 × 104 ≤ Re ≤ 1.5 × 105, the surface roughness can significantly improve the aerodynamic performance. Furthermore, for Re = 2.5 × 105, the roughness still has a favourable effect until the roughness height of h = 0.1 mm. Moreover, it is observed that for 2.5 × 105 < Re ≤ 3 × 106, the lift to drag ratio is decreased by the application of roughness. Consequently, this study reveals that the implementation of the right sort of roughness can enhance the aerodynamic performance of the investigated wind turbine blade profile for some particular flow conditions.
Keywords: Drag reduction; Passive flow control; Surface roughness; Wind turbines (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121016670
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:184:y:2022:i:c:p:421-429
DOI: 10.1016/j.renene.2021.11.082
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().