A sub-continuous lattice Boltzmann simulation for nanofluid cooling of concentrated photovoltaic thermal receivers
Yan Su,
Pengxiang Sui and
Jane H. Davidson
Renewable Energy, 2022, vol. 184, issue C, 712-726
Abstract:
Nanofluid cooling of a concentrated photovoltaic thermal (CPVT) receiver was simulated by a sub-continuous lattice Boltzmann model with the effective thermal conductivity (ETC) and the effective viscosity (EV) nonlinearly related to both nanoparticle concentration and size. Al2O3-water nanofluid cooling efficiencies for various solar irradiance are compared with those of pure water cooling. Flow and temperature fields are simulated for nanofluids with the nanoparticle concentration from 1% to 10%, particle size less than 120 nm, and flow rate over a range of 0.17–3.34 L/min (i.e., the inlet velocity from 1/10 to 2 times of the natural convection velocity scale). In dimensionless form, the parameters are described by concentration, Knudsen number and Richardson number. The enhancement ratios of Nusselt numbers, drag coefficients, and power coefficients due to the application of nanofluids compared to water are presented. An objective enhancement function is defined as the ratio of the Nusselt number to the power coefficient. The maximum enhancement ratio is 1.14 for nanoparticle concentration at 8%, Knudsen number at 0.1 (Al2O3 nanoparticle size 6 nm), and Richardson number 10 (the inlet velocity about 1/3 of the natural convection velocity scale), respectively. This study provides a practical tool for optimal nanofluid cooling enhancement of CPVT solar receivers.
Keywords: Nanofluid cooling; Photovoltaic-thermal receiver; Heat transfer enhancement; Nanofluid drag (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121017018
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:184:y:2022:i:c:p:712-726
DOI: 10.1016/j.renene.2021.11.110
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().