Two-stage gasification of dried sewage sludge: Effects of gasifying agent, bed material, gas cleaning system, and Ni-coated distributor on product gas quality
Yong-Seong Jeong,
Tae-Young Mun and
Joo-Sik Kim
Renewable Energy, 2022, vol. 185, issue C, 208-216
Abstract:
Dried sewage sludge gasification was conducted using a two–stage gasifier composed of a fluidized bed gasifier and tar–cracking reactor to produce a gas with low levels of tar, NH3, and H2S. In this work, the influence of the type of gasifying agent and bed material and the equivalence ratio on the product gas quality were investigated. Furthermore, the possibility of gasification without a hot filter and electrostatic precipitator, which are usually applied to remove impurities generated during gasification, was examined. Finally, the efficiency of a Ni–coated distributor for tar and NH3 removal was evaluated. Overall, steam/O2 gasification produced H2–rich (38–39 vol%) gases. Further, olivine reduced the tar and NH3 contents in the product gas obtained from steam/O2 gasification to 138 mg/Nm3 and 236 ppmv, respectively. A gas cleaning system without a hot filter and electrostatic precipitator produced a gas with only 8 mg/Nm3 of tar. Moreover, a Ni-coated distributor was found to be very effective in reducing the NH3 content to 60 ppmv. Dried sewage sludge gasification experiments in air were conducted four times for 4 h, producing gases with very low levels of tar (3–10 mg/Nm3) and NH3 (60–90 ppmv).
Keywords: Two-stage gasification; Dried sewage sludge; Tar; Ammonia; Hydrogen; Active carbon (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121017894
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:185:y:2022:i:c:p:208-216
DOI: 10.1016/j.renene.2021.12.069
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().