A de-ambiguous condition monitoring scheme for wind turbines using least squares generative adversarial networks
Anqi Wang,
Zheng Qian,
Yan Pei and
Bo Jing
Renewable Energy, 2022, vol. 185, issue C, 267-279
Abstract:
Wind turbine condition monitoring (WTCM) plays an important role in reducing operation & maintenance (O&M) cost and improving the reliability of wind farms. Supervisory control and data acquisition (SCADA) data have advantages such as easy access and strong timeliness and are used widely for WTCM. However, it is difficult to distinguish and label historical SCADA data as healthy or faulty accurately during the model training process. Therefore, a De-ambiguous Condition Monitoring scheme with Transfer layer (DCMT) based on SCADA data is proposed to overcome this problem. This scheme provides a fault early warning for wind turbines. In this scheme, an improved auto-encoder (AE) network with a transfer layer is designed to eliminate the effect of SCADA data in the ambiguous status (ambiguous data) and enhance the reliability of a training dataset. Meanwhile, a structure of Siamese encoder is designed to calculate the residuals between latent features, i.e., the outputs of the Siamese encoders. These residuals can be utilised to identify wind turbine operational conditions. Further, least squares generative adversarial networks (LSGAN) is introduced to learn the distribution of health data while restricting the discriminator and realising the augmentation of health data for model training. The proposed method is applied to two cases of generator winding and gearbox bearing over-temperature faults of wind turbines from northwest China. Compared with other methods, the proposed method effectively detects potential abnormal conditions in advance without raising false alarms.
Keywords: Condition monitoring; Supervisory control and data acquisition; Wind turbines; Least squares generative adversarial networks (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121017699
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:185:y:2022:i:c:p:267-279
DOI: 10.1016/j.renene.2021.12.049
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().