A deep learning-based strategy for fault detection and isolation in parabolic-trough collectors
Sara Ruiz-Moreno,
Adolfo J. Sanchez,
Antonio J. Gallego and
Eduardo F. Camacho
Renewable Energy, 2022, vol. 186, issue C, 691-703
Abstract:
Solar plants are exposed to the appearance of faults in some of their components, as they are vulnerable to the action of external agents (wind, rain, dust, birds …) and internal defects. However, it is necessary to ensure a satisfactory operation when these factors affect the plant. Fault detection and diagnosis methods are essential to detecting and locating the faults, maintaining efficiency and safety in the plant. This work proposes a methodology for detecting and isolating faults in parabolic-trough plants. It is based on a three-layer methodology composed of a neural network to obtain a preliminary detection and classification between three types of fault, a second stage analyzing the flow rate dynamics, and a third stage defocusing the first collector to analyze thermal losses. The methodology has been applied by simulation to a model of the ACUREX plant, which was located at the Plataforma Solar de Almería. The confusion matrices have been obtained, with accuracies over 80% when using the three layers in a hierarchical structure. By forcing all the three layers, the accuracies exceed 90%.
Keywords: Solar energy; Parabolic-trough collectors; Artificial intelligence; Fault detection; Fault diagnosis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122000283
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:186:y:2022:i:c:p:691-703
DOI: 10.1016/j.renene.2022.01.029
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().