A hybrid approach to multi-step, short-term wind speed forecasting using correlated features
Fei Sun and
Tongdan Jin
Renewable Energy, 2022, vol. 186, issue C, 742-754
Abstract:
Wind power is becoming a main alternative energy source to meet the growing electricity needs. Forecasting wind speed is important to mitigate generation uncertainty and optimize asset utilization. This paper proposes a hybrid wind speed prediction model with multivariate input and multi-step output capability. The model synthesizes linear time series regression with nonlinear machine learning algorithm. The input neurons of the hybrid model are determined by the number of lag observations in autoregressive integrated moving average (ARIMA), and also by correlated meteorological features, such as wind direction, air pressure, humidity, dew point, and temperature. The output neurons are further derived based on the forecasting horizon. The hybrid model is trained, validated, and tested by using 1.73 million hourly meteorological records from three cities with diverse wind profiles. The performance of the model is compared with several existing methods based on root mean square error and mean absolute error. Though the hybrid model does not show obvious advantage in 1-h ahead prediction, it outperforms persistence model, ARIMA, and univariate neural network models in 3-to-24 h ahead prediction. The hybrid model is able to reduce the prediction error by 20% in comparison with univariate neural networks.
Keywords: Neural network; Supervised learning; Time series; Meteorological features; Hybrid model; Wind rose (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122000477
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:186:y:2022:i:c:p:742-754
DOI: 10.1016/j.renene.2022.01.041
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().