Experimental investigation and annual performance mathematical-prediction on a novel LT-PV/T system using spiral-descent concentric copper tube heat exchanger as the condenser for large-scale application
Zhaomeng Li,
Jie Ji,
Jing Li,
Xudong Zhao,
Yu Cui,
Zhiying Song,
Xin Wen and
TingTing Yao
Renewable Energy, 2022, vol. 187, issue C, 257-270
Abstract:
The condensers of loop thermosyphon PV/T systems (LT-PV/T) are usually integrated inside water tanks, which may bring some challenges during combination use. This research innovatively proposed a concentric copper tube heat exchanger as the condenser, which is combined with a copper tube evaporator beneath the absorber. The gaseous working fluid flows in the inner tube and the cooling water flows in the outer tube. Since ordinary water pipes are used for water circulating between the outer tube and water tank, this LT-PV/T collector can be used individually or combined with other collectors flexibly. To access its' performance, researches have been conducted: (1) Designing and fabricating the system prototypes; (2) Investigating system performance with different volume-filling ratios (26.5%, 34.8%, 43.2%); (3) Investigating the influences of working fluid (water, ethanol and R134A). (4) Evaluating the systems’ performance with energy efficiency, exergy efficiency, and semi-empirical system efficiency models; (5) Conducting two case studies in South China (an individual collector & a 4 parallelly/serially-combined LT-PV/T collectors system). The system is first-of-its-kind and has obvious advantages in reliability, flexibility, space-saving and large-scale applications. The typical primary energy-saving efficiency of the LT-PV/T with R134a of 40% filling ratio can reach 78.0%, higher than the published LT-PV/T systems.
Keywords: Loop thermosyphon; Photovoltaic/thermal technology; Concentric copper tube heat exchanger; Working fluid; Volume-filling ratio (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122000891
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:187:y:2022:i:c:p:257-270
DOI: 10.1016/j.renene.2022.01.079
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().