Intelligent charge compression ignition combustion for range extender medium duty applications
Antonio García,
Javier Monsalve-Serrano,
Santiago Martinez-Boggio,
Wenbin Zhao and
Yong Qian
Renewable Energy, 2022, vol. 187, issue C, 671-687
Abstract:
Electrified powertrains have been growth in the last few years due to the increase in powertrain efficiency. However, for heavy-duty vehicles the right choice it is not clear. The long-routes and large number of daily kilometres makes that current battery technology it is not prepared to cover the minimum requirements. A mid-term solution is hybrid powertrains. The mix between pure electric range and range extender mode in liquid fuels make perfect to complete a large distance. However, tailpipe pollutant and CO2 emissions are still a disadvantage against pure electric powertrain. This study analyses the potential of hybrid powertrains running in an advanced combustion mode as Intelligent Charge Compression Ignition. Due to the flexibility of the combustion mode different renewable energy fuels are tested: Butanol, Methanol and Biodiesel. The work is focused in urban buses due to the potential of electrified powertrains in this context and the large number of vehicles concentrated in cities. The results show that pure electric bus reduce 54% the CO2 emissions at LCA level. Meanwhile the Intelligent Charge Compression Ignition allows to 32% with one renewable fuel (Diesel-Butanol) and 66% with two renewable fuels (Biodiesel-Methanol) with respect to the non-hybrid diesel reference.
Keywords: Renewable energy; Advanced combustion mode; Electrified powertrain; Life cycle analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122001203
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:187:y:2022:i:c:p:671-687
DOI: 10.1016/j.renene.2022.01.110
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().