EconPapers    
Economics at your fingertips  
 

Modeling and dynamic characteristic simulation of air-cooled proton exchange membrane fuel cell stack for unmanned aerial vehicle

Chengyuan Gong, Lu Xing, Cong Liang and Zhengkai Tu

Renewable Energy, 2022, vol. 188, issue C, 1094-1104

Abstract: Air-cooled low-temperature proton exchange membrane fuel cell stack applied with metallic bipolar plate is considered as a promising power source for an unmanned aerial vehicle. This paper presents a coupled electrochemical thermal model for simulating its dynamic characteristic. The impact of the applied metallic bipolar plate on the stack thermal balance is considered; an environmental model estimating atmospheric temperature and pressure variations with altitude is included. Our theoretical analysis shows that with altitude increased from 0m to 4000m, the output electric power declined rate is 4.7–6.5% at the current density of 400–800 mA cm−2. To avoid severe stack degradation due to high stack operating temperature, minimum air stoichiometric ratio is required for maintaining stack thermal balance. When the altitude increases from 0 to 4000m, the minimum required air stoichiometric ratio decreases from 110 to 22 at the current density of 800 mA cm−2.

Keywords: Proton exchange membrane fuel cell; Air-cooled; Performance; Thermal management; Unmanned aerial vehicle (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122002531
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:188:y:2022:i:c:p:1094-1104

DOI: 10.1016/j.renene.2022.02.104

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:188:y:2022:i:c:p:1094-1104