EconPapers    
Economics at your fingertips  
 

Flow-induced pulsations in Francis turbines during startup - A consequence of an intermittent energy system

Saeed Salehi and Håkan Nilsson

Renewable Energy, 2022, vol. 188, issue C, 1166-1183

Abstract: Hydraulic turbines are increasingly responsible for regulating the electric grid, due to the rapid growth of the intermittent renewable energy resources. This involves a large increase in the number of starts and stops, which cause severe flow-induced pulsations and fluctuating forces that deteriorate the machines. Better knowledge of the evolution of the flow in the machines during transients makes it possible to avoid hazardous conditions, plan maintenance intervals, and estimate the costs of this new kind of operation. The present work provides an in-depth and comprehensive numerical study on the flow-induced pulsations and evolution of the flow field in a high-head model Francis turbine during a startup sequence. The flow simulation is carried out using the OpenFOAM open-source CFD code. A thorough frequency analysis is conducted on the fluctuating part of different pressure probes and force components, utilizing Short-Time Fourier Transform (STFT) to extract the evolution of the frequency and amplitude of pulsations. Low-frequency oscillations are detected during the startup, which are induced by the complex flow structure in the draft tube. A decomposition is performed on the draft tube pressure signals, and the variations of the synchronous (plunging) and asynchronous (rotating) modes are studied. The plunging mode is stronger at minimum and deep part load conditions, whereas the rotating mode is dominant during the presence of the Rotating Vortex Rope (RVR) at part load. The velocity field in the draft tube is validated against experimental data, and the complex flow structures formed during the startup procedure are explained using the λ2 vortex identification method.

Keywords: High head Francis turbine; Startup sequence; Flow-induced pulsations; Plunging and rotating modes; Rotating vortex rope (RVR); OpenFOAM (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122001215
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:188:y:2022:i:c:p:1166-1183

DOI: 10.1016/j.renene.2022.01.111

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:188:y:2022:i:c:p:1166-1183