EconPapers    
Economics at your fingertips  
 

Relationship between number of turns of serpentine structure with metal foam flow field and polymer electrolyte membrane fuel cell performance

Jonghyun Son, Sukkee Um and Young-Beom Kim

Renewable Energy, 2022, vol. 188, issue C, 372-383

Abstract: Metal foam flow field is applied on a polymer electrolyte membrane fuel cell (PEMFC) to improve its performance by enhancing mass transfer property. Generally, the metal foam is employed without any structure in the channel location, which results in the mainstream of reactants not flowing to the corner of the reaction area and instead of flowing straight from inlet to outlet. This causes an uneven reaction rate throughout the reaction area. To resolve the problem, the serpentine structure was devised on a metal foam flow field at the cathode to guide the reactant flow path to the corner of the reaction area. The number of turns of the serpentine structure was controlled as variables. With the increase in the number of turns, the reactant concentration at reaction sited increased, improving the PEMFC performance. At 0.5 V, PEMFC with metal foam and 2 turns serpentine structure shows 4.7% improved performance. However, due to the increased length of flow from the structure, the pressure drop that induced high parasitic loss became higher. As a result, the net power of PEMFC with serpentine structure considering parasitic loss improved 1.7% comparing to PEMFC with bulk metal foam.

Keywords: Polymer electrolyte membrane fuel cell; Metal foam flow field; Serpentine structure; Computational fluid dynamics; Mass transfer characteristic improvement; Two phase analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122001409
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:188:y:2022:i:c:p:372-383

DOI: 10.1016/j.renene.2022.02.001

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:188:y:2022:i:c:p:372-383