Role of phase change materials in backfilling of flat-panels ground heat exchanger
Michele Bottarelli,
Eleonora Baccega,
Silvia Cesari and
Giuseppe Emmi
Renewable Energy, 2022, vol. 189, issue C, 1324-1336
Abstract:
The behaviour of a multi-source heat pump system coupled with phase change materials (PCMs) is discussed in this manuscript, as based on selected data collected during one-year testing at the TekneHub Laboratory of the University of Ferrara (Italy), as a synergic prototype setup of two European projects: IDEAS, an H2020 project, and CLIWAX, an EFDR project. Three geothermal loops of novel shallow Flat-Panels ground heat exchangers (GHX) provide the coupling of a water-to-water heat pump with the ground, as backfilled with sand, a mixture of sand and granules with paraffins and containers filled in with hydrated salts. Furthermore, two hybrid photovoltaic panels and a dry-cooler complete the exploitable thermal sources landscape. Finally, a control unit manages all the elements for the exploitation of the different thermal sources. How the increased underground thermal energy storage is driven by PCMs has been investigated by means of specific tests, and compared with the standard case of backfilling sand. Results confirm that PCMs can compensate peak loads occurring during hard weather conditions. Good performances of the multi-source heat pump were found, with a winter coefficient of performance always higher than 5. Finally, the application of PCM in summer should be preferred in climatic zones with hot summers and cold winters, With evidence, latent heat, thermal conductivity and melting point of PCMs should be tuned accordingly to the energy requirements and the local ground thermal conditions.
Keywords: Multi-source heat pumps; Ground heat exchangers; Phase change materials; Experimental test (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122003445
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:189:y:2022:i:c:p:1324-1336
DOI: 10.1016/j.renene.2022.03.061
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().