Exploration of lower critical solution temperature DES in a thermoreversible aqueous two-phase system for integrating glucose conversion and 5-HMF separation
Shanshan Tu,
Xiaojie Yu,
Qinghua Ji,
Qiannan Ma,
Cunshan Zhou,
Li Chen and
Clinton Emeka Okonkwo
Renewable Energy, 2022, vol. 189, issue C, 392-401
Abstract:
With the deepening of the research on the conversion of cellulose biomass to furfural, there is no green and efficient method to separate sugars and 5-HMF. This study utilized a thermoreversible aqueous two-phase system (ATPS) coupled with tetrabutylammonium bromide ([N4444]Br)- based deep eutectic solvents (DES) and inorganic salts for separating glucose and 5-HMF. The thermal characteristics of DESs were analyzed by thermogravimetry (TGA) and differential scanning calorimetry (DSC). The thermoreversible phase behavior of ATPS was determined by phase diagram. Furthermore, the process factors were optimized, such as the type and concentration of DES and phosphate, the temperature, and the time of ATPS were investigated, to maximize the separation of glucose and 5-HMF. Finally, the ATPS was a successful integrated catalytic reaction of glucose involving CrCl3 and 5-HMF separation. The results showed that the ATPS consist of 30 wt% [N4444]Br-EG and 25 wt% K2HPO4 had the most efficient extraction rate, 5-HMF reached 96.0 ± 0.6%, and mainly existed in the DES phase, while glucose was enriched in salt phase, and the extraction rate reached 99.9 ± 0.03%. And the 5-HMF yield reached 25.6 ± 1.1% in the production separation integrated platform. This thermoreversible ATPS may provide a guide for the effective extraction of furfural from biomass-derived glucose.
Keywords: Thermoreversible; Deep eutectic solvents; Lower critical solution temperature; Aqueous two-phase system; 5-Hydroxymethylfurfural (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122002452
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:189:y:2022:i:c:p:392-401
DOI: 10.1016/j.renene.2022.02.096
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().