Revealing the sodium storage behavior of biomass-derived hard carbon by using pure lignin and cellulose as model precursors
Xi-Shuo Wu,
Xiao-Ling Dong,
Bo-Yang Wang,
Ji-Li Xia and
Wen-Cui Li
Renewable Energy, 2022, vol. 189, issue C, 630-638
Abstract:
Lignin and cellulose are dominant components in biomass and hold the key for preparing hard carbons. Identifying the sodium storage behaviors of sole lignin/cellulose-derived hard carbons is significant for choosing optimal biomass precursors. Herein, milled-wood lignin and microcrystalline cellulose are used as model precursors to prepare hard carbons and the corresponding sodium storage performances are investigated to understand the contribution of each biomass component. Compared with lignin-derived carbon, cellulose-derived carbon enables a larger initial Coulombic efficiency of 87.1%, a higher reversible capacity of 343.3 mA h g−1 at 0.02 A g−1 and a good rate capability of 49.2 mA h g−1 at 1 A g−1 owing to larger La, lower ID/IG values and higher sp2C, CO contents with the benefit of enhancing the conductivity, plateau capacity, and the rapid diffusion of sodium ions. The excellent performance of cellulose-derived carbon provides guidance on the choice of biomass precursors for high-performance sodium-ion batteries.
Keywords: Sodium-ion batteries; Hard carbon; Biomass; Coulombic efficiency (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122003007
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:189:y:2022:i:c:p:630-638
DOI: 10.1016/j.renene.2022.03.023
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().