EconPapers    
Economics at your fingertips  
 

Comparative techno-economic modelling of large-scale thermochemical biohydrogen production technologies to fuel public buses: A case study of West Midlands region of England

Danielle J. Nouwe Edou and Jude A. Onwudili

Renewable Energy, 2022, vol. 189, issue C, 704-716

Abstract: This work presents techno-economic modelling of four thermochemical technologies that could produce over 22,000 tonnes/year of hydrogen from biomass for >2000 public transport buses in West Midlands region, UK. These included fluidised bed (FB) gasification, fast pyrolysis-FB gasification, fast pyrolysis-steam reforming, and steam reforming of biogas from anaerobic digestion (AD). Each plant was modelled on ASPEN plus with and without carbon capture and storage (CCS), and their process flow diagrams, mass and energy balances used for economic modelling. Payback periods ranged from 5.10 to 7.18 years. For operations with CCS, in which the captured CO2 was sold, FB gasification gave the lowest minimum hydrogen selling price of $3.40/kg. This was followed by AD-biogas reforming ($4.20/kg), while pyrolysis-gasification and pyrolysis-reforming gave $4.83/kg and $7.30/kg, respectively. Hydrogen selling prices were sensitive to raw material costs and internal rates of return, while revenue from selling CO2 was very important to make biohydrogen production cost competitive. FB gasification and AD-biogas reforming with CCS could deliver hydrogen at less than or around $4/kg when CO2 was sold at above $75/tonne. This study showed that thermochemical technologies could produce biohydrogen at competitive prices to extend the current use of electrolytic hydrogen-fuelled buses in Birmingham to the wider West Midlands region.

Keywords: Green biohydrogen fuel; FB gasification; Pyrolysis-reforming; Pyrolysis-gasification; AD-Biogas reforming; Techno-economic modelling (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122002221
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:189:y:2022:i:c:p:704-716

DOI: 10.1016/j.renene.2022.02.074

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:704-716