CFD and exergy analysis of subcritical/supercritical CO2 based naturally circulated solar thermal collector
Madagonda K. Biradar,
Dipal N. Parmar and
Ajay Kumar Yadav
Renewable Energy, 2022, vol. 189, issue C, 865-880
Abstract:
Solar water heating system is inefficient during winter due to the chances of water freezing and higher viscosity at low temperatures. Several investigations are being done to increase the efficiency of the solar water heater using various secondary fluids for different climatic conditions. This paper emphasises on the study of heat transfer and fluid flow behavior of CO2 based naturally circulated indirect solar water heating system. Subcritical (liquid and vapour) and supercritical CO2 are considered as loop fluid, and the results are compared with water based system. Three-dimensional computational fluid dynamics simulations are carried out for two different weather conditions i.e., winter (278 K) and summer (305 K). Results are obtained for 33° collector inclination angle from horizontal at various operating pressures 50–70 bar for subcritical and 80–100 bar for supercritical CO2. The CO2 based system yields very high Reynolds number (subcritical liquid: ∼160 times; subcritical vapour: ∼204 times; supercritical vapour: ∼260 times) and very high Nusselt number (subcritical liquid: ∼14 times; subcritical vapour: ∼19.5 times; supercritical vapour: ∼48 times) compared to water based system. Supercritical CO2 based system exhibits 12% higher energy efficiency compared to water. Whereas, subcritical vapour based system exhibits 140% higher exergy efficiency relative to water based system.
Keywords: Solar thermal collector; Natural circulation loop; CFD; Supercritical carbon dioxide; Heat transfer; Exergy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122003330
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:189:y:2022:i:c:p:865-880
DOI: 10.1016/j.renene.2022.03.056
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().