EconPapers    
Economics at your fingertips  
 

Artificial neural networks used for the performance prediction of a thermosiphon solar water heater

Soteris A Kalogirou, Sofia Panteliou and Argiris Dentsoras

Renewable Energy, 1999, vol. 18, issue 1, 87-99

Abstract: Artificial Neural Networks (ANN) are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant, are able to deal with non-linear problems, and once trained can perform prediction at high speed. ANNs have been used in diverse applications and they have shown to be particularly effective in system modelling as well as for system identification. The objective of this work is to train an artificial neural network (ANN) to learn to predict the performance of a thermosiphon solar domestic water heating system. This performance is measured in terms of the useful energy extracted and of the stored water temperature rise. An ANN has been trained using performance data for four types of systems, all employing the same collector panel under varying weather conditions. In this way the network was trained to accept and handle a number of unusual cases. The data presented as input were, the storage tank heat loss coefficient (U-value), the type of system (open or closed), the storage volume, and a total of fifty-four readings from real experiments of total daily solar radiation, total daily diffuse radiation, ambient air temperature, and the water temperature in storage tank at the beginning of the day. The network output is the useful energy extracted from the system and the water temperature rise. The statistical coefficient of multiple determination (R2-value) obtained for the training data set was equal to 0.9914 and 0.9808 for the two output parameters respectively. Both values are satisfactory because the closer R2-value is to unity the better is the mapping. Unknown data for all four systems were subsequently used to investigate the accuracy of prediction. These include performance data for the systems considered for the training of the network at different weather conditions. Predictions with maximum deviations of 1 MJ and 2.2°C were obtained respectively. Random data were also used both with the performance equations obtained from the experimental measurements and with the artificial neural network to predict the above two parameters. The predicted values thus obtained were very comparable. These results indicate that the proposed method can successfully be used for the estimation of the performance of the particular thermosiphon system at any of the different types of configuration used here. The greatest advantage of the present model is the capacity of the network to learn from examples and thus gradually improve its performance. This is done by embedding experimental knowledge in the network.

Date: 1999
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148198007873
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:18:y:1999:i:1:p:87-99

DOI: 10.1016/S0960-1481(98)00787-3

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:18:y:1999:i:1:p:87-99