EconPapers    
Economics at your fingertips  
 

Combining game theory concepts and system dynamics for evaluating renewable electricity development in fossil-fuel-rich countries in the Middle East and North Africa

Fateme Dianat, Vahid Khodakarami, Seyed-Hossein Hosseini and Hamed Shakouri G

Renewable Energy, 2022, vol. 190, issue C, 805-821

Abstract: Renewable electricity development is not a critical concern in fossil-fuel-rich countries in the Middle East and North Africa, where fossil fuels are abundant and accessible. As a result, the growth of fossil-fuel electricity generators reduces renewable electricity competitiveness and slows its development. Since renewable electricity has an insufficient market share (less than 5% of total electricity generation in these countries, according to global statistics), its development should become a priority due to fossil-fuel depletion and demand growth in the future. The present study investigates various scenarios to examine the energy sector's development in countries facing severe competitiveness challenges of renewable electricity. Then, it recommends the most appropriate policies through evaluating the proposed plans' effectiveness. In this regard, a comprehensive framework has been developed by integrating system dynamics modeling, agent-based modeling logic, and game theory concepts. This systemic modeling procedure has several advantages, including formation of a macro policymaking perspective, the analysis of renewable electricity development trends, and the simulation of competitors' and investors' reactions and decisions. In this case, Iran is chosen for the study due to being a representative of these countries, and its data have been used to validate the proposed model. Model validation showed less than 9% error between simulation results and real data. Besides, the simulation results indicated that establishing a competitive market and enacting targeted support policies could stimulate the development of renewable electricity up to the year 2060. A presumed combined policy based on efficient simulated scenarios could increase renewable electricity capacity and market share 5-fold and 6-fold by 2035, respectively. Also, it could improve capacity and market share 8-fold and 10-fold by 2060, respectively.

Keywords: Renewable electricity generation; Expansion planning; Fossil-fuel-rich country; System dynamics; Evolutionary game theory; Support policy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122004505
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:190:y:2022:i:c:p:805-821

DOI: 10.1016/j.renene.2022.03.153

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:190:y:2022:i:c:p:805-821