EconPapers    
Economics at your fingertips  
 

Direct numerical simulations of aerodynamic performance of wind turbine aerofoil by considering the blades active vibrations

M.E. Nakhchi, S. Win Naung, L. Dala and M. Rahmati

Renewable Energy, 2022, vol. 191, issue C, 669-684

Abstract: In the present study, the aerodynamic performance of the horizontal-axis wind turbine blades by considering the flap-wise oscillations are numerically investigated by using direct numerical simulations (DNS). The details of flow structure can be analysed and predicted by performing DNS over an oscillating blade by considering the realistic behaviour of the wind turbine blade structure with natural vibration frequencies. In this study, the impact of vibrations on the flow separation point, laminar separation bubble (LSB) and stall over NACA-4412 aerofoil are investigated utilising the high-fidelity spectral-hp element methodology. The Reynolds number and angle of attack were selected in the range of 50,000≤Re≤75,000 and 8°≤AoA≤16°. It is found that the blade vibrations have a noticeable impact on the aerodynamic performance and delay the stall occurrence, and the lift remains high even at higher AoAs, in comparison with the stationary blade. The size of the flow separation is reduced by the blade oscillation and the vibration also affects the separation point. Due to the harmonic oscillation of the blade, the pressure signals are periodic, and the pressure fluctuations are amplified by the oscillations, especially in the flow separation region. The time-averaged lift coefficient is increased by 255.3% by raising the angle of attack, from 0° to 12° at Re = 75,000. Compared to Re = 50,000, the peak-to-peak amplitude for the angle of attack of 0° is higher, whereas that of 8° and 12° are slightly lower at Re = 75,000.

Keywords: Direct numerical simulations; Wind turbine; Blade vibrations; Trailing edge vortex; LSB (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122005134
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:191:y:2022:i:c:p:669-684

DOI: 10.1016/j.renene.2022.04.052

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:191:y:2022:i:c:p:669-684