EconPapers    
Economics at your fingertips  
 

On-sun testing of a 1 MWth quartz tube bundle solid particle solar receiver

Yupu Yu, Feng Hu, Fengwu Bai and Zhifeng Wang

Renewable Energy, 2022, vol. 193, issue C, 383-397

Abstract: Solid particle solar receivers (SPSRs) are receiving increasing attention for the high operation temperature, which offers the potential for reducing the cost of solar thermal power plants. The configurations of previous SPSRs suffer from the barriers of complicated structures and inferior thermal performances. There is an urgent demand to develop a SPSR lumped of a simple configuration, a lower cost and superior thermal performances. In this paper, a quartz tube bundle SPSR with a thermal power capacity of 1 MW was designed and developed. On-sun tests were conducted based on a solar power tower plant and the total on-sun operation time has exceeded 100 h until the writing of the paper. The experimental results show that the receiver configuration has strong resistance to the non-uniform incident irradiances, even to the transient overcast sky condition. The maximum outlet temperature of 872°C was obtained with 59 heliostats in operation, direct normal irradiance of 865W/m2 and residual time of 351 s. The maximum temperature increase per length reached 324°C/m.

Keywords: Quartz tubes; Solid particle solar receiver; On-sun tests (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122006772
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:193:y:2022:i:c:p:383-397

DOI: 10.1016/j.renene.2022.05.036

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:193:y:2022:i:c:p:383-397