Study on heat storage performance of a novel vertical shell and multi-finned tube tank
Qianjun Mao,
Xinlei Hu and
Tao Li
Renewable Energy, 2022, vol. 193, issue C, 76-88
Abstract:
High-efficient latent heat storage technology plays a crucial role in solar energy utilization. In this study, a shell-and-tube heat storage tank employing a novel fin structure has been proposed. A three-dimensional unsteady heat transfer model of the tank has been established. The effects of fin height, fin angle and fin number on liquid fraction, average temperature and heat storage rate have been investigated. The results show that the complete melting time of the phase change material in the novel finned tube is shortened by 66.4% compared with the finless structure. The melting time of the fins with heights of 34.20 mm, 42.75 mm, and 51.30 mm are shortened by 56.9%, 60.1% and 66.4%, respectively. When the fin height exceeds 51.30 mm, the melting rate remains almost unchanged. The fin angle is not the larger the better. Compared with the bending angles of 10°, 20° and 40°, the complete melting time of 30° is reduced by 14.0%, 11.6% and 6.4%, respectively. As the number of fins increases, the total heat storage time is shorter, but the total heat storage has also been reduced. The results can provide a good reference for design, operating, and energy-saving of latent heat storage systems.
Keywords: Latent heat storage; Novel fin structure; Melting process; Heat storage rate (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122006504
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:193:y:2022:i:c:p:76-88
DOI: 10.1016/j.renene.2022.05.010
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().