A novel wind turbine fault diagnosis method based on compressed sensing and DTL-CNN
Yan Zhang,
Wenyi Liu,
Xin Wang and
Heng Gu
Renewable Energy, 2022, vol. 194, issue C, 249-258
Abstract:
This paper describes the development of a fault diagnosis method for identifying different fault conditions in the rolling bearings and gears of wind turbines. For the fault signal, the compressed sensing (CS) technology is used to perform noise reduction and feature extraction. The noise reduction process consists of sparse compression and reconstruction of the signal. After the data is processed by the compressed sensing technology, the noise and redundant parts of the signal can be greatly removed, and the real operating state signal of the wind turbine can be restored to the maximum. The fault diagnosis scheme is based on a combination of deep transfer learning and convolutional neural network (DTL-CNN), which is able to perform fault type identification with a small batch of rolling bearing data samples and gear samples. In this study, a new CNN structure was developed and the structure was used to achieve bearing-to-bearing and bearing-to-gear transfer fault diagnosis. Finally, the reliability and superiority of the proposed method in wind turbine rolling bearing and gear fault diagnosis are shown by the experimental results.
Keywords: Wind turbines; Fault diagnosis; Compressed sensing; Deep transfer learning; Convolutional neural network (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122007327
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:194:y:2022:i:c:p:249-258
DOI: 10.1016/j.renene.2022.05.085
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().