Enhancement of glucose production from sugarcane bagasse through an HCl-catalyzed ethylene glycol pretreatment and Tween 80
Yanting Lv,
Zhengyu Chen,
Huan Wang,
Yongcang Xiao,
Rongxin Ling,
Murong Gong and
Weiqi Wei
Renewable Energy, 2022, vol. 194, issue C, 495-503
Abstract:
In this work, an HCl-catalyzed ethylene glycol (EG) pretreatment was exploited for promoting sugar release from sugarcane bagasse (SCB). The results showed that the combination of HCl and EG could remove the xylan (∼100.0%) and lignin (∼61.3%) in SCB together, which finally resulted in the pretreated substrate having a good efficacy for follow-up enzymatic hydrolysis. The maximum glucose yield of this work was 93.9% and obtained after pretreatment at 130 °C for 60 min with 0.5% HCl and 72 h enzymatic digestion. The analysis of various pretreated or un-pretreated SCB indicated that the changes of surface morphology and internal compositions of SCB were the mainly reasons for its hydrolysis efficiency enhancement. The addition of Tween 80 into hydrolysis process could remarkably shorten hydrolysis time and cellulase dosage from 72 h to 36 h and 20 FPU/g substrate to 10 FPU/g substrate, respectively, meanwhile maintaining a relatively high glucose yield (91.4%).
Keywords: SCB; HCl-catalyzed EG pretreatment; Enzymatic hydrolysis; Glucose; Tween 80 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122007595
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:194:y:2022:i:c:p:495-503
DOI: 10.1016/j.renene.2022.05.108
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().