EconPapers    
Economics at your fingertips  
 

Experimental investigation of a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine

Decheng Kong, Yunfeng Wang, Ming Li and Jingkang Liang

Renewable Energy, 2022, vol. 194, issue C, 705-718

Abstract: To improve the problem of insufficient energy supply for a solar drying system, a novel hybrid drying system powered by a solar photovoltaic/thermal (PV/T) air collector and wind turbine was proposed and tested. In this study, turnips were selected as drying samples to study the hybrid dryer performance. The results demonstrated that the electricity provided by the solar and wind energy met the requirements of the drying system for all-day work. The total energy efficiencies of the amorphous silicon PV/T collector for the two days of the drying experiment were 61.4% and 55.2%, and the exergy efficiencies were 9.95% and 9.60%. For the monocrystalline silicon PV/T collector, the total energy efficiencies for the two days were 35.5% and 36.0%, and the exergy efficiencies were 10.22% and 9.31%. The energy efficiency of the wind turbine was 21.6%. Fresh turnips with a moisture content of 16.680 kg water·(kg dry matter)−1 were dried to achieve a final value of 0.132 kg water·(kg dry matter)−1, and this took 28 h (including night) when using the hybrid drying system. After drying overnight, the turnips' moisture content was decreased by 1.556 kg water·(kg dry matter)−1. The drying efficiency of the hybrid dryer reached 8.99%.

Keywords: Hybrid drying system; PV/T collector; Wind turbine; Energy analysis; Exergy analysis; Drying efficiency (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122007492
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:194:y:2022:i:c:p:705-718

DOI: 10.1016/j.renene.2022.05.102

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:194:y:2022:i:c:p:705-718