EconPapers    
Economics at your fingertips  
 

Optimal design of a hybrid ground source heat pump for an official building with thermal load imbalance and limited space for the ground heat exchanger

F. Cruz-Peragón, F.J. Gómez-de la Cruz, J.M. Palomar-Carnicero and R. López-García

Renewable Energy, 2022, vol. 195, issue C, 381-394

Abstract: This work presents the optimal design of a hybrid ground source heat pump (GSHP), taking into account thermal imbalance and space limitation for the ground heat exchanger field (GHE), applied to an official building. Once the building loads are calculated and devices selected, experiments carried out from a single vertical borehole obtain the ground thermal characteristics, including a local short-term period function (STGF). From them, the Finite Line-Source (FLS) model simulates the GHE behavior, from decomposing the ground thermal loads in hourly linear steps for 50 years. A set of input variables, such as geometric configuration data of boreholes field, and additional terms associated with this hybrid operation, must be provided to the model. For optimization purposes, a design of experiments (DoE) considers the thermal ground characteristics and input factors, providing both energy savings and the internal rate of return as outputs (objective functions). Pareto's optimal solutions method provides the selected case, considering a compromise between economic and environmental benefits. It has been established for 18 boreholes (rectangular disposition) of 120 m deep, providing a 33.12% energy saving and an internal rate of return of 3.9%, also showing 89% of the total building load supported by the GHE.

Keywords: GSHP system; G-function; FSL model; Geothermal heat exchanger; Building energy efficiency; Pareto (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122008849
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:195:y:2022:i:c:p:381-394

DOI: 10.1016/j.renene.2022.06.052

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:195:y:2022:i:c:p:381-394