EconPapers    
Economics at your fingertips  
 

New proton conductive membranes of indazole- and condensed pyrazolebisphosphonic acid-Nafion membranes for PEMFC

Fátima C. Teixeira, António P.S. Teixeira and C.M. Rangel

Renewable Energy, 2022, vol. 196, issue C, 1187-1196

Abstract: In this work, new doped Nafion membranes for PEMFC are prepared by casting with 1 wt% loading of the prepared indazole- and condensed pyrazolebisphosphonic acids (AzBPs). The new membranes were analysed by ATR-FTIR spectroscopy and their morphology was examined by SEM. Membranes were evaluated for water uptake and ion exchange capacity (IEC), and their hydration number was estimated. The proton conduction properties of the modified membranes were evaluated by electrochemical impedance spectroscopy (EIS), at different temperatures (30, 40, 50 and 60 °C) and relative humidity (RH) (40, 60 and 80%). The proton conductivities of all membranes increase with increasing temperature and RH. Also, all new membranes doped with AzBPs exhibited higher proton conductivities than Nafion N-115, used as a reference and tested at the same experimental conditions, with values up to 1.5-fold. Results show that the incorporation of AzBPs dopants on Nafion membranes enhances the proton conduction throughout the modified membranes. The best proton conductivity was observed for membranes with AzBP1 as dopant, with a value of 94 mS cm-1. These results indicate that the Nafion membranes doped with indazole- and condensed pyrazolebisphosphonic acids are a promising approach for new membranes for PEMFC with improved proton conductivity.

Keywords: Proton exchange membranes; Fuel cells; Nafion; Bisphosphonic acids; Proton conductivity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122010497
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:196:y:2022:i:c:p:1187-1196

DOI: 10.1016/j.renene.2022.07.054

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1187-1196