Transcritical carbon dioxide cycle as a way to improve the efficiency of a Liquid Air Energy Storage system
Aleksandra Dzido,
Marcin Wołowicz and
Piotr Krawczyk
Renewable Energy, 2022, vol. 196, issue C, 1385-1391
Abstract:
The article deals with the subject of energy storage. This important issue relates to the ongoing transformation toward renewable energy sources. Liquid Air Energy Storage (LAES) is a mechanical energy storage technology that is suitable for large-scale energy storage. The article presents a method to increase the efficiency of LAES by coupling it with the transcritical carbon dioxide cycle. To this end, the paper presents a numerical analysis of two Kapitza LAES systems with the transcritical CO2 cycle: in parallel and subsequent mode. In both cases, maximizing CO2 pressure contributes to greater overall efficiency. It is only profitable to direct residual heat to the CO2 cycle. In contrast, lowering the air temperature prior to expansion in hopes of providing a greater amount of heat to the CO2 cycle actually delivers worse results. Parallel system implementation can add 5–6% to storage efficiency, depending on other factors. In comparison, the subsequent system only adds some 3.5%–5% to storage efficiency.
Keywords: Liquid air energy storage; LAES; Carbon dioxide; Transcritical cycle; Hybrid cycle (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122010953
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:196:y:2022:i:c:p:1385-1391
DOI: 10.1016/j.renene.2022.07.093
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().