Design and performance simulation of a distributed aerobic composting system assisted by solar PV/T heat pump
Yifan Jiang,
Xinsheng Li,
Jian Yao,
Xin Wan,
Jingxin Zhang and
Yanjun Dai
Renewable Energy, 2022, vol. 196, issue C, 547-559
Abstract:
In this study, a distributed aerobic composting system was proposed and simulated assisted by a solar photovoltaic thermal (PV/T) heat pump. The PV/T heat pump was adopted to provide the electrical energy and heat energy required by the aerobic composting system. In addition, the area of solar photovoltaic panels required for compost fermenter at different volumes was calculated, and the effects of ambient temperatures, wind speeds and solar radiation intensities on the performance exhibited by the hybrid system were investigated. As indicated from the result, when the temperature of the composting tank was maintained at 60 °C, the C/N ratio can be reduced to 11.5:1 and the GI can reach 101.7%, satisfied the compost maturity standard. Moreover, as the ambient temperature decreased, the heat loss of the composting system and the energy consumption of the hybrid system increased. The wind speed did not significantly impact the comprehensive performance exhibited by the system. Under the average solar radiation of 600 W/m2, a maximum of 10 m2 PV/T panels could be installed on the top of a standard container, and a maximum of 6000L of aerobic composting system could be installed within the container. Accordingly, the 6000L composting system coupling with PV/T heat pump could generate 85.64 kWh electricity in one period (10 days) without consuming energy.
Keywords: Composting; PV/T heat pump; Solar energy; Biomass energy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122009879
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:196:y:2022:i:c:p:547-559
DOI: 10.1016/j.renene.2022.06.147
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().