EconPapers    
Economics at your fingertips  
 

Machine learning and shallow groundwater chemistry to identify geothermal prospects in the Great Basin, USA

Bulbul Ahmmed and Velimir V. Vesselinov

Renewable Energy, 2022, vol. 197, issue C, 1034-1048

Abstract: This study discovers various geothermal prospects in the Great Basin, USA based on shallow groundwater chemical (geochemical) data. The geochemical data are expected to include hidden (latent) information that is a proxy for geothermal prospectivity. We processed the sparse geochemical data in the Great Basin at 14,341 locations including 18 attributes. Next, a non-negative matrix factorization with customized k-means clustering is applied to the geochemical data matrix that automatically finds three hidden geothermal signatures representing modestly, moderately, and highly confident geothermal prospects. The algorithm also evaluated the probability of occurrence of these types of resources through the studied region. There is a consistency between regional geothermal prospectivity as estimated by our ML methodology and the traditional play fairway analysis conducted over a portion of the study area. We also identify the dominant data attributes associated with each signature. Finally, our ML analyses allow us to reconstruct attributes from sparse into continuous over the study domain. The predicted continuous attributes can be used for future detailed geothermal explorations in the Great Basin.

Keywords: Play fairway analysis; Geothermal resources; Machine learning; Geochemistry (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122011922
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:197:y:2022:i:c:p:1034-1048

DOI: 10.1016/j.renene.2022.08.024

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:1034-1048