Lipase-Ca2+ hybrid nanobiocatalysts through interfacial protein-inorganic self-assembly in deep-eutectic solvents (DES)/water two-phase system for biodiesel production
Zhijin Zhang,
Yingjie Du,
Geling Kuang,
Xuejian Shen,
Xiaotong Jia,
Ziyuan Wang,
Yuxiao Feng,
Shiru Jia,
Fufeng Liu,
Muhammad Bilal and
Jiandong Cui
Renewable Energy, 2022, vol. 197, issue C, 110-124
Abstract:
The production of biodiesel catalyzed by lipase has the advantages of simple process, low energy consumption, and low wastewater treatment requirements. However, low activity, poor stability, and difficulty in recycling still limit the application of lipase in production of biodiesel. Herein, a novel lipase hybrid biocatalyst with superior catalytic activity and stability (lipase from Aspergillus oryzae CJLU-3, AOCL@CaP in DES) was developed by dual activation of Ca2+ and interfacial effect of deep-eutectic solvents (DES)/water two-phase system. AOCL@CaP in DES exhibited significantly enhanced enzymatic activity with a Kcat/Km value of 692 s−1 mM−1 and excellent thermostability, tolerance to chemical denaturants, substrate selectivity, and reusability compared with free lipase. Recovery activity of the prepared hybrid biocatalyst in pure water system (AOCL@CaP) and AOCL@CaP in DES was 195% and 250% using p-NPL as substrate, respectively. AOCL@CaP in DES exhibited about 253% of the original activity after 100 days of storage, while free AOCL, AOCL@CaP almost completely lost activity. The FAME content in product biodiesel catalyzed from soybean oil by AOCL@CaP was only 60%, However, the FAME content catalyzed by AOCL@CaP in DES reached 87%, and could be maintained at 50% even after 10 cycles.
Keywords: Lipase immobilization; Biodiesel production; Deep-eutectic solvents; Interfacial effect; Two-phase system (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122010941
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:197:y:2022:i:c:p:110-124
DOI: 10.1016/j.renene.2022.07.092
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().