EconPapers    
Economics at your fingertips  
 

A classifier to detect best mode for Solar Chimney Power Plant system

Emad Abdelsalam, Omar Darwish, Ola Karajeh, Fares Almomani, Dirar Darweesh, Sanad Kiswani, Abdullah Omar and Malek Alkisrawi

Renewable Energy, 2022, vol. 197, issue C, 244-256

Abstract: Machine learning (ML) classifiers were used as a novel approach to select the best operating mode for Hybrid Solar Chimney Power Plant (HSCPP). The classifiers (decision tree (J48), Nave Bayes (NB), and Support Vector Machines (SVM)) were developed to identify the best operating modes of the HSCPP based on meteorological data sets. The HSCPP uses solar irradiation (SolarRad) to function as a power plant (PP) during the day and as a cooling tower (CT) at night. The SVM is the best classifier to predict the operating mode of HSCPP with an accuracy of ∼2% compared to NB and J48. Under the studied conditions the Regression analysis using REPTree was found to outperform SMOreg and achieved a relative absolute error ∼20 kWh. The productivity of the HSCPP is highly affected by maximum air temperature (Tair,Max), the average temperature of air (T air,Avg), solar irradiation standard deviation (SolarRadSTD), and maximum wind speed (Wsp,Max). Under optimal conditions, the HSCPP generates an additional 2.5% of energy equivalent to revenue of $3910.5 per year. Results show that ML can be used to optimize the operation of HSCPP for maximum electrical power and distilled water production.

Keywords: AI; Machine learning (ML); Water production; Power generation; Process performance efficiency (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122010515
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:197:y:2022:i:c:p:244-256

DOI: 10.1016/j.renene.2022.07.056

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:244-256