Highly efficient Cu-based catalysts for selective hydrogenation of furfural: A key role of copper carbide
Yunlong Yao,
Zhiquan Yu,
Chenyang Lu,
Fanfei Sun,
Yao Wang,
Zhichao Sun,
Yingya Liu and
Anjie Wang
Renewable Energy, 2022, vol. 197, issue C, 69-78
Abstract:
Copper catalysts showed excellent CO hydrogenation selectivity, but poor ability of hydrogen dissociation. Herein, a strategy to improve the activity of a Cu-based catalyst is developed by thermal treatment of Cu(OH)2 at 100 °C with C2H2/Ar (0.5 vol%) followed by H2 reduction at 300 °C. By means of X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS), it was revealed that CuxC crystallites, in addition to Cu crystallites, were present in the prepared catalysts. In furfural hydrogenation at 60 °C and 1.0 MPa, the CuxC-containing catalyst showed significantly higher activity than the Cu counterpart prepared from the same precursor by H2 reduction at 300 °C. The introduction of ZnO improved the dispersion, and thus led to enhanced catalytic performance. The CuxC-Cu-ZnO catalyst with Zn/Cu molar ratio of 0.5 showed considerably high hydrothermal stability in a 70-h run, with furfural conversion of >99.0% and the furfuryl alcohol selectivity of 100%.
Keywords: Furfural; Hydrogenation; Copper catalyst; Furfuryl alcohol; Copper carbide (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122010576
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:197:y:2022:i:c:p:69-78
DOI: 10.1016/j.renene.2022.07.062
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().