EconPapers    
Economics at your fingertips  
 

Slotted metallic nanospheres with both electric and magnetic resonances for solar thermal conversion

Caiyan Qin, Qunzhi Zhu, Xiaoke Li, Chunlei Sun, Meijie Chen and Xiaohu Wu

Renewable Energy, 2022, vol. 197, issue C, 79-88

Abstract: Due to its excellent optical characteristics, plasmonic nanoparticles have attracted great interest for the application in the direct absorption solar collectors (DASCs). The optical properties of nanospheres, nanorods, core/shell nanoparticles, and star-shape nanoparticles have been investigated. These nanostructures can induce localized surface plasmon resonance (LSPR) which is associated to electric resonance. However, at the occurrence of LSPR, besides the reinforced absorption, the scattering is also greatly enhanced, which can be detrimental for direct solar energy absorption. In this study, we proposed slotted metallic nanospheres for solar thermal conversion. Both electric and magnetic resonances can be excited in the slotted nanospheres, beneficial for solar energy absorption along the broad solar spectra. Compared to electric resonance, the excited magnetics resonances in the slotted nanosphere cause weaker scattering, which can better contribute to the absorption of solar energy. The study also showed that the optical proprieties can be effectively tuned by varying the particle size and number of slots. The proposed slotted nanospheres have good potential to be used in a DASC for solar thermal conversion and other photothermal applications.

Keywords: Slotted nanoparticles; Localized surface plasmon resonance; Magnetic resonance; Solar thermal conversion (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122011016
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:197:y:2022:i:c:p:79-88

DOI: 10.1016/j.renene.2022.07.098

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:79-88