EconPapers    
Economics at your fingertips  
 

Effect of dry torrefaction pretreatment of the microwave-assisted catalytic pyrolysis of biomass using the machine learning approach

Ramesh Potnuri, Dadi V. Suriapparao, Chinta Sankar Rao, Veluru Sridevi and Abhishankar Kumar

Renewable Energy, 2022, vol. 197, issue C, 798-809

Abstract: This study employs the Leave-One-Out cross-validation approach to build a machine-learning model using polynomial regression to predict pyro product yield through microwave-assisted pyrolysis of sawdust over KOH catalyst and graphite powder a susceptor. The determination of coefficient (R2) validates the developed models. All the developed models achieved a high prediction accuracy with R2 > 0.93, which signifies that the experimental values are in good agreement with the predicted one. The dependence of the catalyst loading and pretreatment temperature on dominating process parameters such as heating rate, pyrolysis temperature, susceptor thermal energy, and pyro products, namely bio-oil, biochar, and biogas, are explored. The yield of biochar is reduced; however, bio-oil and biogas are enhanced as the catalyst loading increased. On the other hand, increasing the temperature of pretreated sawdust decreased bio-oil and biogas yields while increasing biochar yields. Further, microwave conversion efficiency, and susceptor thermal energy increased with increased catalyst quantity and pretreatment temperatures of sawdust. It was observed that the average heating rate was increased by increasing the catalyst quantity while maintaining the same pyrolysis time until pretreatment temperatures of 150 °C were reached, after which the heating rate dropped due to the continuous microwave energy input to the system.

Keywords: Dry torrefaction; Sawdust; Microwave-assisted pyrolysis; Polynomial regression; Machine learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122011727
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:197:y:2022:i:c:p:798-809

DOI: 10.1016/j.renene.2022.08.006

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:798-809