“Carbon diffusion” engineered carbon nitride nanosheets for high-efficiency photocatalytic solar-to-fuels conversion
Ruijie Chen,
Zhiqiang Zhang,
Jun Wu,
Xueru Chen,
Lei Wang,
Haotian Yin,
Hongping Li,
Jing Ding,
Hui Wan and
Guofeng Guan
Renewable Energy, 2022, vol. 197, issue C, 943-952
Abstract:
The fabrication of graphitic carbon nitride (g-C3N4) has received much attention for its superior photoelectronic properties, it remains a remarkable challenge with a feasible methodology. Herein, inspired by carburization, a novel method with carbon diffusion was proposed to prepare g-C3N4 nanosheets (CNNS). The carbon diffusion was caused by the gradient difference in carbon concentration between the gaseous environment and the C15 (mild steel with low carbon content) during thermal polymerization. Eventually, the CNNS with approximately 1.5 nm thickness was successfully fabricated and exhibited larger surface area (98.08 m2 g−1), which was 15.42 times higher than that of bulk g-C3N4 (BCN). In the evaluation of photocatalytic CO2 reduction activity, the CH3OH formation rate over CNNS (2.10 μmol g−1 h−1) was 3.28 times greater than BCN. Meanwhile, the designed CNNS exhibited dramatic improvement on H2 evolved rate (HER) of 2507.02 μmol g−1 h−1, which was 6.99 times higher than BCN. More importantly, the C15 possessed the advantage of 10 times recycled to use for the fabrication of CNNS accompanied by a moderate decrease of HER. Moreover, the density functional theory (DFT) calculations were carried out based on the results. This work highlights an ingenious tactic with carbon diffusion for preparing CNNS towards renewable solar energy conversion.
Keywords: g-C3N4 nanosheets; Carbon diffusion; Photocatalytic CO2 reduction; Photocatalytic H2 evolution (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122011806
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:197:y:2022:i:c:p:943-952
DOI: 10.1016/j.renene.2022.08.014
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().