EconPapers    
Economics at your fingertips  
 

How the sulfur dioxide in the flue gas influence microalgal carbon dioxide fixation: From gas dissolution to cells growth

Jingwei Fu, Yun Huang, Ao Xia, Xianqing Zhu, Xun Zhu, Jo-Shu Chang and Qiang Liao

Renewable Energy, 2022, vol. 198, issue C, 114-122

Abstract: Aiming at realizing efficient microalgae-based CO2 sequestration from coal-fired power plants, this study investigated the interaction between the mass transfer of SO2-contained flue gas and microalgae growth. The results indicate that the CO2 dissolution in microalgae suspension and the growth of Chlorella vulgaris could be hindered by solution acidification and oxidative molecular species produced in the conversion of bisulfite to sulfate. With the SO2 concentration increased from 0 to 400 ppm, the pH of the culture medium decreased from 7 to 2, and the SO42− concentration reached 1 g L−1, resulting in a decrement of 18.1% in the CO2 dissolution rate. Moreover, the Chlorella cells could only maintain their growth within the SO42− concentration of 800 mg L−1 accompanied by a decrement of 58% in maximum biomass concentration. The cultivation collapsed under excessive SO2 (over 400 ppm) as the plasmolysis and chloroplast decomposition occurred which severely inhibited the microalgal photosynthesis. This work provides a guide to cultivating microalgae using real flue gas.

Keywords: Flue gas treatment; CO2 biofixation; Gas-liquid mass transfer; Chlorella vulgaris; Photoautotrophy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812201223X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:198:y:2022:i:c:p:114-122

DOI: 10.1016/j.renene.2022.08.057

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:198:y:2022:i:c:p:114-122