Theoretically based correction to model test results of OWC wave energy converters to account for air compressibility effect
António F.O. Falcão,
João C.C. Henriques,
Rui P.F. Gomes and
Juan C.C. Portillo
Renewable Energy, 2022, vol. 198, issue C, 41-50
Abstract:
The oscillating-water-column (OWC) wave energy converter with air turbine has been object of extensive development. The spring-like effect of air compressibility in the chamber is related to the density–pressure relationship. It is known to significantly affect the power performance of the full-sized converter, and is rarely accounted for in model testing. A method is presented to correct results from physical model testing for effects of air compressibility. It combines linear theory in the frequency domain and hydrodynamic coefficients, together with air thermodynamics. A new concept of linear turbine simulator aerodynamically equivalent to the orifice simulator is introduced in the theory. Corrections for non-linear real-fluid effects may be accounted for from comparisons with data from wave tank testing. The method was validated in a case study involving published data from OWC model testing with regular waves of different periods and amplitudes in a wave flume. Theoretically based corrections were found to well predict the air compressibility effects upon power performance. Air compressibility may negatively or positively affect power conversion depending on whether the wave period is larger or smaller than a critical value accurately predicted by the theory.
Keywords: Wave energy; Oscillating water column; Air turbine; Air chamber; Compressibility; Model testing (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122012009
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:198:y:2022:i:c:p:41-50
DOI: 10.1016/j.renene.2022.08.034
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().