Thermo-economic analysis of integrated gasification combined cycle co-generation system hybridized with concentrated solar power tower
Muhammad Adnan,
Muhammad Zaman,
Atta Ullah,
Afsin Gungor,
Muhammad Rizwan and
Salman Raza Naqvi
Renewable Energy, 2022, vol. 198, issue C, 654-666
Abstract:
Integrated gasification combined cycle (IGCC) systems have the ability to utilize low-quality coal with reduced emissions and multiple co-generation capabilities (i.e., power, chemicals and fuels). Integration of solar power tower (SPT) with IGCC co-generation can provide an opportunity to use lignite coal with lowest greenhouse gas emissions. In this work, thermodynamic and economic evaluations of solar-IGCC 100% power (power only) hybrids and co-generation (electricity, methane and ammonia) hybrids have been performed using Aspen Plus® V.11 and system advisor model (SAM). Two designs (i.e., large and medium solar) of the SPT have been simulated and optimized for Pakistani weather conditions. Thermodynamic evaluations include, net electrical efficiency, effective energy efficiency and solar-to-electric efficiency of hybrid plants. Economic estimations include, levelized cost of energy, total plant costs, operating and maintenance costs for hybrid plants. Specific CO2 emissions after hybridization are also evaluated. Total annualized revenue at flexible market scenarios and production scenarios have also been evaluated. The net boosted electrical efficiency of 100% power (Hyb-1A) is 38.77%, and the improved efficiency after flue gas integration with SPT for the pre-heating of boiler feed water is 39.10%. The minimum specific CO2 emission achieved from one hybrid combination (Hyb-4A) is 42.1 kg/MWhnet.
Keywords: Co-generation; Energy integration; Hybrid energy; IGCC; Low-quality coal; Solar power tower (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812201254X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:198:y:2022:i:c:p:654-666
DOI: 10.1016/j.renene.2022.08.088
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().