EconPapers    
Economics at your fingertips  
 

Impacts of surface model generation approaches on raytracing-based solar potential estimation in urban areas

B. Tian, R.C.G.M. Loonen, Á. Bognár and J.L.M. Hensen

Renewable Energy, 2022, vol. 198, issue C, 804-824

Abstract: Raytracing-based methods are widely used for quantifying irradiation on building surfaces. Urban 3D surface models are necessary input for raytracing simulations, which can be generated from open-source point cloud data with the help of surface reconstruction algorithms. In research and engineering practice, various algorithms are being used for this purpose; each leading to different mesh topologies and corresponding performance. This paper compares the impacts of four different reconstruction algorithms by investigating their performance using DAYSIM raytracing simulations. The analysis is carried out for five configurations with various urban morphologies. Results show that the reconstructed models consistently underestimate the shading influence due to geometrical shrinkages that emerge from the various model generation procedures. The explicit algorithms, with Generic Delaunay a notable example, have better performance with less embedded error than the implicit algorithms in both daily and annual simulations. Results also show that diffuse irradiance is responsible for larger contributions to the overall error than direct components. This effect becomes more prominent when modeling reflected irradiation in urban environments. Additionally, the work shows that solar elevation and shading geometry types also affect the error magnitude. The paper concludes by providing reconstruction algorithm selection criteria for photovoltaic practitioners and urban energy planners.

Keywords: Solar potential; Digital surface model; Surface reconstruction; 3D urban model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122012708
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:198:y:2022:i:c:p:804-824

DOI: 10.1016/j.renene.2022.08.095

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:198:y:2022:i:c:p:804-824