EconPapers    
Economics at your fingertips  
 

Parametric study on the performance of electrochemical hydrogen compressors

Min Soo Kim, Jungchul Kim, So Yeon Kim, Chan Ho Chu, Kyu Heon Rho, Minsung Kim and Dong Kyu Kim

Renewable Energy, 2022, vol. 199, issue C, 1176-1188

Abstract: In this study, the parameters of an electrochemical compressor are investigated to determine its operating characteristics. The performance of the electrochemical hydrogen compressor is investigated experimentally, and internal phenomena is analyzed using a computer model. In addition to simple electrochemical reactions, mass transport is considered. First, the effect of the current density on the performance of the electrochemical hydrogen compressor is studied. A high current density is advantageous in terms of the compression time, but a higher energy efficiency is achieved at a low current density because the voltage at a high current density (1 A cm−2) is ∼0.024 V higher than that at a low current density (0.3 A cm−2). Second, the effect of the operating temperature is analyzed. Low operating temperatures lead to a high energy efficiency despite the high membrane resistance at low operating temperatures. Finally, the inlet pressure does not affect the operating voltage of the electrochemical hydrogen compressor because the current density controls the flow rate. This study provides practical guidance for the development of the infrastructure necessary to realize a hydrogen-based society by providing important insights into electrochemical hydrogen compressors as possible alternatives for mechanical compressors.

Keywords: Hydrogen compression; Electrochemical compressor; Polymer electrolyte membrane; Parametric study; Efficiency (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122014409
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:199:y:2022:i:c:p:1176-1188

DOI: 10.1016/j.renene.2022.09.081

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:1176-1188