Optimal design of cathode gas diffusion layer with arrayed grooves for performance enhancement of a PEM fuel cell
Yulin Wang,
Penghui Zhang,
Yuyao Gao,
Wei He,
Yulong Zhao and
Xiaodong Wang
Renewable Energy, 2022, vol. 199, issue C, 697-709
Abstract:
A novel cathode gas diffusion layer (GDL) with arrayed grooves is proposed to enhance the performance of polymer electrolyte membrane (PEM) fuel cells. The influence of various geometric parameters regarding the novel GDL on internal physical quantities transport and cell performance is examined by a 3D multiphase fuel cell model. Results found that oxygen diffusion and water drainage are remarkably enhanced for the novel GDL, thereby leading to an augmented fuel cell performance. A reasonable design of structure parameters, such as the groove size and interval, the length of the GDL with arrayed grooves, and the nonuniform arrayed grooves, could further benefit current density homogeneity and performance for fuel cells. The results reveal that the novel GDL with a groove width, length and interval of 0.1 mm, 0.3 mm and 1.0 mm, respectively, a total arrayed groove length of 15 mm, and a nonuniform arrayed grooves exhibits a better cell performance than all the other designed GDLs and the traditional GDL tested in this simulation. The optimally designed GDL with arrayed grooves improves the maximum power density by approximately 5.6%, enhancing the current density within the regions of CCL near the outlet, thereby favoring the operational stability of fuel cells.
Keywords: PEM fuel cell; GDL with arrayed grooves; Water drainage; Mass diffusion; Current density homogeneity; Cell performance (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122013489
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:199:y:2022:i:c:p:697-709
DOI: 10.1016/j.renene.2022.09.011
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().