Fractional factorial experimental design for optimizing volatile fatty acids from anaerobic fermentation of municipal sludge: Microbial community and activity investigation
Resty Nabaterega,
Brandon Kieft,
Steven J. Hallam and
Cigdem Eskicioglu
Renewable Energy, 2022, vol. 199, issue C, 733-744
Abstract:
Volatile fatty acids (VFAs) production from municipal sludge is a promising venture for resource recovery while ensuring wastewater treatment plants' ecological and economic sustainability. This study used a fractional factorial design (FFD) and response surface methodology (RSM) to optimize VFAs production from municipal sludge in semi-continuous flow acid fermenters (AFs) based on four critical parameters (i.e., sludge retention time (SRT), sludge composition, pH, and temperature) interactively and individually. To ascribe the mechanisms to VFAs production dynamics, non-methanogenic microbial activity assays and microbial community composition linked to the VFAs yields were explored. FFD and RSM successfully optimized VFAs production in the AFs, and a second-order polynomial model with an R-squared of 0.83 was derived. Optimal model conditions for VFAs production were 3-days SRT, 45 °C, pH 8.1, and 0.92 sludge composition (VS/TS ratio). Under these conditions, the model predicted a 3.47-fold increase in VFAs production, close to the experimental value of 3.48. AFs at pH of 8.1 and varying temperatures harbored the highest proportion of fermentative bacteria, mainly Clostridia, and lowest community diversity, indicating strong selective pressure for VFAs-producing populations. Furthermore, the microbial activities assays provided quantitative functional information linked to the microbial communities in each AF configuration consistent with VFAs production.
Keywords: Volatile fatty acids; Anaerobic fermentation; Microbial activity assays; Response surface methodology; Microbial community (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122013246
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:199:y:2022:i:c:p:733-744
DOI: 10.1016/j.renene.2022.08.145
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().