A comprehensive optimal energy control in interconnected microgrids through multiport converter under N−1 criterion and demand response program
Mostafa Kermani,
Peiyuan Chen,
Lisa Göransson and
Massimo Bongiorno
Renewable Energy, 2022, vol. 199, issue C, 957-976
Abstract:
Nowadays, the local distribution grids have been facing technical, economic, and regulatory challenges, because of the increased integration of renewable energy sources (RESs) and electrification of vehicles. The traditional solutions to the grid expansion, e.g., to build an additional power line, are utility-centered solutions, i.e., the distribution grid operators (DSOs) are the only party involved to tackle grid issues. The DSOs have to engage grid users with technology providers to develop innovative solutions that tackle one problem and overcome several cost-effectively. This paper presents a holistic solution to optimally control cross-sectoral energy flow between interconnected microgrids (MGs) consisting of different RESs, hydroelectric power plant (HPP) and wind turbines (WTs) to meet electric vehicles (EVs), residential, commercial and industrial demands with the main grid contribution. This issue will provide the advantages of community-based MGs for local energy trading which causes for an active and engaged system, however, an adequate control strategy for proper operation is required. The proposed solution is based on a new interconnection line between two MGs through a multiport converter (MPC) with the techno-economic consideration of newly installed components such as MPC, cables and the required battery energy storage system (BESS). The proposed case study is evaluated under three different conditions e.g., load increment, demand response (DR) and N-1 criterion in separate, interconnect and island modes. The CPLEX solver of GAMS software is employed to solve the mixed-integer linear programming model. The results show that the applied interconnection line for MGs compared to the separated operation mode can decrease the system's total costs, reduce the applied peak to the upstream grid, and enhance the system's reliability under different conditions. Furthermore, the applied solution provides the ability for MGs operation even in island mode under different conditions for a full day (24 h).
Keywords: Energy control; Interconnected microgrids; Multiport converter; Demand response; Hydroelectric power plant; Wind turbine (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122013428
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:199:y:2022:i:c:p:957-976
DOI: 10.1016/j.renene.2022.09.006
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().