EconPapers    
Economics at your fingertips  
 

Empirical evaluation of demand side response trials in UK dwellings with smart low carbon technologies

Rajat Gupta and Johanna Morey

Renewable Energy, 2022, vol. 199, issue C, 993-1004

Abstract: Low carbon technologies along with smart control have a role in residential demand side response (DSR) to shift the timing of household energy consumption away from peak times and align it with generation of renewable electricity. This paper empirically evaluates the impact of DSR trials on grid electricity import and resident experience regarding disruption to daily routines, thermal comfort and noise disturbance in 17 thermally efficient social housing dwellings (Barnsley, England). Four types of DSR trials were run through 22 interventions performed in March to April 2021. Each dwelling was equipped with a 5 kWh electro-chemical battery and air source heat pump, and all but one dwelling had solar photovoltaic (PV) panels (1.3–3.0 kWp). Interventions were applied against a flat (single) rate tariff as well as dynamic time-of-use tariffs. On average, secure turn-down interventions between 5 and 7 p.m. resulted in a reduction in grid electricity import of 1.2 kWh per household and a reduction in controllable load (heat pump plus battery energy) of 3.7 kWh per household. The batteries enabled 2.5 kWh per household of electricity to be exported to the grid for these interventions. On average, turn-up interventions between 1 and 3 p.m. resulted in an increase of 2.3 kWh per household in grid electricity import. Individual dwellings showed different levels of demand response depending on the levels and patterns of household electricity consumption.

Keywords: Residential demand response; Low carbon technologies; Energy flexibility; Smart energy systems; Resident experience; Heat pumps (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122013441
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:199:y:2022:i:c:p:993-1004

DOI: 10.1016/j.renene.2022.09.008

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:993-1004