EconPapers    
Economics at your fingertips  
 

Production of biodiesel from high acidity waste cooking oil using nano GO@MgO catalyst in a microreactor

Babak Aghel, Ashkan Gouran, Ehsan Parandi, Binta Hadi Jumeh and Hamid Rashidi Nodeh

Renewable Energy, 2022, vol. 200, issue C, 294-302

Abstract: This research aims to improve biodiesel production from waste cooking oil (WCO) by employing a graphene oxide doped magnesium oxide (GO@MgO) nanocatalyst for transesterification. The reaction parameter that impacts the transesterification reaction for biodiesel production is optimized using the response surface approach. Scanning electron microscopy (SEM), Powder X-ray diffraction (XRD), Energy-Dispersive X-ray Spectroscopy (EDX), and Fourier Transform Infrared Spectroscopy (FTIR) were used to analyze the GO@MgO nanocatalyst. At the optimized conditions, the maximum biodiesel purity for MgO and GO@MgO were (93.84%) and (99.23%), respectively. The optimized conditions were as follows: oil/methanol volume ratios of 2.46:1 and 2.67:1, catalyst dosages of 4.7 %wt. and 3.9 %wt., and a reaction time of 176.39 s, and 174.2 s.

Keywords: Biodiesel; Waste cooking oil; Nano catalysts; GO@MgO; Transesterification (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122013957
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:200:y:2022:i:c:p:294-302

DOI: 10.1016/j.renene.2022.09.045

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:294-302