Design limits for wave energy converters based on the relationship of power and volume obtained through multi-objective optimisation
Anna Garcia-Teruel,
Owain Roberts,
Donald R. Noble,
Jillian Catherine Henderson and
Henry Jeffrey
Renewable Energy, 2022, vol. 200, issue C, 492-504
Abstract:
Wave energy conversion can have a significant role in the transition to a net-zero energy system. However, cost reductions are still required for this technology to be commercially competitive. To achieve commercialisation at a reasonable expense, disruptive innovations at early stages of development need to be enabled. Thus, to explore more of the design space, design limits need to be defined. Although physical limits, such as the maximum capture width and the Budal upper bound, have been defined, more realistic limits considering the variability of the resource, device dimensions and the actual hydrodynamic behaviour of different shapes can help provide further insights. This is relevant to both technology developers and funding bodies wanting to identify potential areas for innovation. In this study, the use of multi-objective optimisation is proposed to explore these limits, by investigating the optimal relationship between average annual power production and device size. This relationship depends on resource level, mode of motion used for power extraction and hull shape. The obtained fundamental relationships fall within the existing physical limits, but provide further insights into the impact of different factors on these limits. This allows for a more direct comparison with the performance of state-of-the-art wave energy converters.
Keywords: Wave energy converter; Design limits; Fundamental relationships; Scale; Size; Capture width (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122014033
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:200:y:2022:i:c:p:492-504
DOI: 10.1016/j.renene.2022.09.053
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().