Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks
Jun Zhan,
Chengkun Wu,
Canqun Yang,
Qiucheng Miao,
Shilin Wang and
Xiandong Ma
Renewable Energy, 2022, vol. 200, issue C, 751-766
Abstract:
The existing supervisory control and data acquisition (SCADA) system continuously collects data from wind turbines (WTs), which provides a basis for condition monitoring (CM) of WTs. However, due to the complexity and high dimension and nonlinearity of data, effective modeling of spatial-temporal correlations among the data still becomes a primary challenge. In this paper, we propose a novel CM approach based on the multidirectional spatial-temporal feature aggregation networks (MSTFAN) to accurately evaluate the performance and hence diagnose the faults of the turbines. Firstly, the data collected from various sensors are formulated into graph-structured data at each timestamp. Spatial-temporal network constructed by combing a graph attention network (GAT) and a temporal convolutional network (TCN) is used to extract spatial-temporal features of the data. Then, a bi-directional long short-term memory (BiLSTM) neural network is adopted to further study long-term spatial-temporal dependency of the extracted features. Finally, the condition score is obtained and the streaming peaks over threshold (SPOT) is applied to determine the abnormal threshold for early warning of the fault occurrence. Experiments on datasets from real-world wind farms demonstrate that the proposed approach can detect the early abnormal situation of the WTs, and outperform other established methods.
Keywords: Wind turbine; Condition monitoring (CM); Graph attention network (GAT); Temporal convolutional network (TCN); Spatial-temporal correlation; Streaming peaks over threshold (SPOT) (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122014616
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:200:y:2022:i:c:p:751-766
DOI: 10.1016/j.renene.2022.09.102
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().