EconPapers    
Economics at your fingertips  
 

Maximum energy yield of PV surfaces in France and Italy from climate based equations for optimum tilt at different azimuth angles

Samuele Memme and Marco Fossa

Renewable Energy, 2022, vol. 200, issue C, 845-866

Abstract: In the present paper, the problem of the determination of yearly maximum energy producibility in terms of optimum tilt angle for solar surfaces is addressed with reference to 216 locations in France and Italy. Original correlations are proposed to calculate the optimal surface slope as a correction parameter to be applied to the local latitude angle. The correction factor formulas are based on local climate conditions and have been inferred from local monthly insolation data (12-year global and diffuse irradiance, PV-GIS-SARAH platform). An optimization problem is solved aimed at maximizing the yearly collectable energy by a sloped surface, in a range of azimuth values (from South Facing to East Facing), for all the selected locations. Different equation forms have been investigated and compact and accurate formulas have been developed able to provide the optimal tilt as a function of latitude, surface azimuth and clearness parameters. The accuracy of the proposed formulas resulted in a correlation coefficient with respect to the “exact” tilt angles higher than 0.93 for azimuth angles till 60°. Proposed formulas allow up to a 4% increase in collectable solar energy, corresponding, as an example, to a virtual increase in PV module efficiency from 21% to 21.8%.

Keywords: Optimal tilt angle; Photovoltaic module orientation; Solar collector orientation; Clearness index (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122015129
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:200:y:2022:i:c:p:845-866

DOI: 10.1016/j.renene.2022.10.019

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:845-866