EconPapers    
Economics at your fingertips  
 

Optimization and lubrication properties of Malaysian crude palm oil fatty acids based neopentyl glycol diester green biolubricant

Nurazira Mohd Nor, Nadia Salih and Jumat Salimon

Renewable Energy, 2022, vol. 200, issue C, 942-956

Abstract: Green biolubricant base stock based on crude palm oil fatty acids (CPOFAs) was produced through acid catalyst esterification of palm oil fatty acids with neopentyl glycol (NPG). The response surface methodology (RSM) of D-optimal design was employed to optimize the esterification process. The resultant polyol ester, crude palm oil fatty acids-NPG diester (CPOFAs-NPGDE) was evaluated its lubrication properties. The optimal condition for the esterification process was obtained at CPOFAs:NPG molar ratio of 2.26:1, 1.12% H2SO4 catalyst, reaction temperature of 138 °C for 4.79 h reaction time, respectively. The optimal CPOFAs-NPGDE produced was 87.6% yield with 100% diester selectivity. The resultant ester showed good lubrication properties with oxidative stability temperature at 184 °C, pour point at 10 °C, flash point at 235 °C and viscosity index of 190. Tribological tests showed that COFAs-NPGDE has shown low coefficient friction of hydrodynamic regime of 0.20 at 40 °C and 0.19 at 100 °C and comparable with some commercial lubricants. Rheological tests show that CPOFAs-NPGDE can be classified as a Newtonian fluid with good lubrication properties within ISO VG 46 lubricant grade. This make it plausible to be used for green industrial lubrication applications such as hydraulic oil, compressor and turbine fluids.

Keywords: D-optimal design; Neopentyl glycol diester; ISO VG 46; Green hydraulic fluids (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122014719
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:200:y:2022:i:c:p:942-956

DOI: 10.1016/j.renene.2022.09.112

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:942-956